Advanced Anomaly Detection in ECG Signals Through Convolutional Autoencoders

Main Article Content

  Henderi Henderi
  Misinem Misinem
  Hamdani Hamdani
  Mohd Zaki Zakaria
  Shahreen Binti Kasim

Abstract

This article aims to present a comprehensive study on convolutional autoencoders for advanced anomaly detection in ECG signals. Anomaly detection in complex datasets has become increasingly critical due to the rising need for systems that can effectively identify irregularities that may indicate fraud, system failures, or significant deviations from normal operations. Traditional methods often need help capturing nuanced patterns in high-dimensional data, necessitating more sophisticated approaches. This research uses an autoencoder-based model as a robust solution for anomaly detection, utilizing its capability to learn high-level representations in an unsupervised manner. The proposed model uses a convolutional autoencoder architecture to compress and decompress input data, thus highlighting anomalies through reconstruction errors. We outline detailed experiment strategies, including model training on average data to minimize reconstruction loss, setting an optimal threshold for anomaly sensitivity based on validation loss, and evaluating the model using precision, recall, F1-score, and AUC-ROC metrics. These experiments were conducted using a dataset with labeled normal and abnormal instances, allowing precise tuning and assessment of model performance. The results indicate that the autoencoder discriminates between normal and abnormal data, achieving high precision and recall at 99.22% and 98.98%, respectively. The confusion matrix and loss distribution analysis further validate the model's efficacy, clearly distinguishing between normal and abnormal data loss values concerning the defined threshold. This research shows the autoencoder model demonstrates high accuracy in anomaly detection and offers insights into the types of anomalies it can detect, supporting its application across various domains requiring reliable anomaly identification.

Downloads

Download data is not yet available.

Article Details

How to Cite
Henderi, H., Misinem, M., Hamdani, H., Zakaria, M. Z., & Kasim, S. B. (2024). Advanced Anomaly Detection in ECG Signals Through Convolutional Autoencoders. IJOEM Indonesian Journal of E-Learning and Multimedia, 3(3), 114–125. https://doi.org/10.58723/ijoem.v3i3.308
Section
Articles

References

Arifin, J., & Norma, A. (2019). Image Processing on the Ekg Signal. Media Elektrika, 11(1), 27–33. https://doi.org/10.26714/me.v11i1.4503

Azhari, M., Situmorang, Z., & Rosnelly, R. (2021). Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes. Jurnal Media Informatika Budidarma, 5(2), 640–651. https://doi.org/10.30865/mib.v5i2.2937

Bianto, M. A., Kusrini, K., & Sudarmawan, S. (2020). Perancangan Sistem Klasifikasi Penyakit Jantung Mengunakan Naïve Bayes. Creative Information Technology Journal, 6(1), 75–83. https://doi.org/10.24076/citec.2019v6i1.231

Cahyanti, D., Rahmayani, A., & Husniar, S. A. (2020). Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara. Indonesian Journal of Data and Science, 1(2), 39–43. https://doi.org/10.33096/ijodas.v1i2.13

Camm, N. J. (2024). Revolutionizing Cardiac Diagnosis: An AI Algorithm for Heart Abnormality Detection in Medical Imaging- A Review of Current and Emerging Techniques. Clinical Cardiology and Cardiovascular Interventions, 6(2), 01–08. https://doi.org/10.31579/2641-0419/304

Gupta, U., Paluru, N., Nankani, D., Kulkarni, K., & Awasthi, N. (2024). A comprehensive review on efficient artificial intelligence models for classification of abnormal cardiac rhythms using electrocardiograms. Heliyon, 10(5), e26787. https://doi.org/10.1016/j.heliyon.2024.e26787

Letourneau, K. M., Horne, D., Soni, R. N., McDonald, K. R., Karlicki, F. C., & Fransoo, R. R. (2018). Advancing prenatal detection of congenital heart disease: A novel screening protocol improves early diagnosis of complex congenital heart disease. Journal of Ultrasound in Medicine, 37(5), 1073–1079. https://doi.org/10.1002/jum.14453

Moreno-Sánchez, P. A., García-Isla, G., Corino, V. D. A., Vehkaoja, A., Brukamp, K., van Gils, M., & Mainardi, L. (2024). ECG-based data-driven solutions for diagnosis and prognosis of cardiovascular diseases: A systematic review. Computers in Biology and Medicine, 172(February), 1–20. https://doi.org/10.1016/j.compbiomed.2024.108235

Primajaya, A., & Sari, B. N. (2018). Random Forest Algorithm for Prediction of Precipitation. Indonesian Journal of Artificial Intelligence and Data Mining, 1(1), 27–31. https://doi.org/10.24014/ijaidm.v1i1.4903

Sarajcev, P., Kunac, A., Petrovic, G., & Despalatovic, M. (2021). Power system transient stability assessment using stacked autoencoder and voting ensemble†. Energies, 14(11), 1–26. https://doi.org/10.3390/en14113148

Serhani, M. A., El Kassabi, H. T., Ismail, H., & Navaz, A. N. (2020). ECG monitoring systems: Review, architecture, processes, and key challenges. Sensors (Switzerland), 20(6), 1–40. https://doi.org/10.3390/s20061796

Siontis, K. C., Noseworthy, P. A., Attia, Z. I., & Friedman, P. A. (2021). Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nature Reviews Cardiology, 18(7), 465–478. https://doi.org/10.1038/s41569-020-00503-2

Uzun, O., Kennedy, J., Davies, C., Goodwin, A., Thomas, N., Rich, D., Thomas, A., Tucker, D., Beattie, B., & Lewis, M. J. (2018). Training: Improving antenatal detection and outcomes of congenital heart disease. BMJ Open Quality, 7(4), 1–11. https://doi.org/10.1136/bmjoq-2017-000276

Wibisono, A. B., & Fahrurozi, A. (2019). Perbandingan Algoritma Klasifikasi Dalam Pengklasifikasian Data Penyakit Jantung Koroner. Jurnal Ilmiah Teknologi Dan Rekayasa, 24(3), 161–170. https://doi.org/10.35760/tr.2019.v24i3.2393

Yildirim, O., Tan, R. S., & Acharya, U. R. (2018). An efficient compression of ECG signals using deep convolutional autoencoders. Cognitive Systems Research, 52, 198–211. https://doi.org/10.1016/j.cogsys.2018.07.004