Advanced Anomaly Detection in ECG Signals Through Convolutional Autoencoders
Main Article Content
Abstract
This article aims to present a comprehensive study on convolutional autoencoders for advanced anomaly detection in ECG signals. Anomaly detection in complex datasets has become increasingly critical due to the rising need for systems that can effectively identify irregularities that may indicate fraud, system failures, or significant deviations from normal operations. Traditional methods often need help capturing nuanced patterns in high-dimensional data, necessitating more sophisticated approaches. This research uses an autoencoder-based model as a robust solution for anomaly detection, utilizing its capability to learn high-level representations in an unsupervised manner. The proposed model uses a convolutional autoencoder architecture to compress and decompress input data, thus highlighting anomalies through reconstruction errors. We outline detailed experiment strategies, including model training on average data to minimize reconstruction loss, setting an optimal threshold for anomaly sensitivity based on validation loss, and evaluating the model using precision, recall, F1-score, and AUC-ROC metrics. These experiments were conducted using a dataset with labeled normal and abnormal instances, allowing precise tuning and assessment of model performance. The results indicate that the autoencoder discriminates between normal and abnormal data, achieving high precision and recall at 99.22% and 98.98%, respectively. The confusion matrix and loss distribution analysis further validate the model's efficacy, clearly distinguishing between normal and abnormal data loss values concerning the defined threshold. This research shows the autoencoder model demonstrates high accuracy in anomaly detection and offers insights into the types of anomalies it can detect, supporting its application across various domains requiring reliable anomaly identification.
Downloads
Article Details
Copyright (c) 2024 Henderi Henderi, Misinem Misinem, Hamdani Hamdani, Mohd Zaki Zakaria, Shahreen Binti Kasim

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Arifin, J., & Norma, A. (2019). Image Processing on the Ekg Signal. Media Elektrika, 11(1), 27–33. https://doi.org/10.26714/me.v11i1.4503
Azhari, M., Situmorang, Z., & Rosnelly, R. (2021). Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes. Jurnal Media Informatika Budidarma, 5(2), 640–651. https://doi.org/10.30865/mib.v5i2.2937
Bianto, M. A., Kusrini, K., & Sudarmawan, S. (2020). Perancangan Sistem Klasifikasi Penyakit Jantung Mengunakan Naïve Bayes. Creative Information Technology Journal, 6(1), 75–83. https://doi.org/10.24076/citec.2019v6i1.231
Cahyanti, D., Rahmayani, A., & Husniar, S. A. (2020). Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara. Indonesian Journal of Data and Science, 1(2), 39–43. https://doi.org/10.33096/ijodas.v1i2.13
Camm, N. J. (2024). Revolutionizing Cardiac Diagnosis: An AI Algorithm for Heart Abnormality Detection in Medical Imaging- A Review of Current and Emerging Techniques. Clinical Cardiology and Cardiovascular Interventions, 6(2), 01–08. https://doi.org/10.31579/2641-0419/304
Gupta, U., Paluru, N., Nankani, D., Kulkarni, K., & Awasthi, N. (2024). A comprehensive review on efficient artificial intelligence models for classification of abnormal cardiac rhythms using electrocardiograms. Heliyon, 10(5), e26787. https://doi.org/10.1016/j.heliyon.2024.e26787
Letourneau, K. M., Horne, D., Soni, R. N., McDonald, K. R., Karlicki, F. C., & Fransoo, R. R. (2018). Advancing prenatal detection of congenital heart disease: A novel screening protocol improves early diagnosis of complex congenital heart disease. Journal of Ultrasound in Medicine, 37(5), 1073–1079. https://doi.org/10.1002/jum.14453
Moreno-Sánchez, P. A., García-Isla, G., Corino, V. D. A., Vehkaoja, A., Brukamp, K., van Gils, M., & Mainardi, L. (2024). ECG-based data-driven solutions for diagnosis and prognosis of cardiovascular diseases: A systematic review. Computers in Biology and Medicine, 172(February), 1–20. https://doi.org/10.1016/j.compbiomed.2024.108235
Primajaya, A., & Sari, B. N. (2018). Random Forest Algorithm for Prediction of Precipitation. Indonesian Journal of Artificial Intelligence and Data Mining, 1(1), 27–31. https://doi.org/10.24014/ijaidm.v1i1.4903
Sarajcev, P., Kunac, A., Petrovic, G., & Despalatovic, M. (2021). Power system transient stability assessment using stacked autoencoder and voting ensemble†. Energies, 14(11), 1–26. https://doi.org/10.3390/en14113148
Serhani, M. A., El Kassabi, H. T., Ismail, H., & Navaz, A. N. (2020). ECG monitoring systems: Review, architecture, processes, and key challenges. Sensors (Switzerland), 20(6), 1–40. https://doi.org/10.3390/s20061796
Siontis, K. C., Noseworthy, P. A., Attia, Z. I., & Friedman, P. A. (2021). Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nature Reviews Cardiology, 18(7), 465–478. https://doi.org/10.1038/s41569-020-00503-2
Uzun, O., Kennedy, J., Davies, C., Goodwin, A., Thomas, N., Rich, D., Thomas, A., Tucker, D., Beattie, B., & Lewis, M. J. (2018). Training: Improving antenatal detection and outcomes of congenital heart disease. BMJ Open Quality, 7(4), 1–11. https://doi.org/10.1136/bmjoq-2017-000276
Wibisono, A. B., & Fahrurozi, A. (2019). Perbandingan Algoritma Klasifikasi Dalam Pengklasifikasian Data Penyakit Jantung Koroner. Jurnal Ilmiah Teknologi Dan Rekayasa, 24(3), 161–170. https://doi.org/10.35760/tr.2019.v24i3.2393
Yildirim, O., Tan, R. S., & Acharya, U. R. (2018). An efficient compression of ECG signals using deep convolutional autoencoders. Cognitive Systems Research, 52, 198–211. https://doi.org/10.1016/j.cogsys.2018.07.004